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Record Linkage

• Linking databases containing information on the same unit
is an increasingly popular research strategy in many
academic fields, commercial data mining and official
statistics.

• The purpose of the linkage operation is the production of a
dataset containing information on the same individuals.

• This dataset will be used for detailed statistical analyses,
most of them requiring micro-data.
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Approaches to Record-Linkage

• Technically, linking with a universally available unique
national identification number (NID) is ideal.

• Such NIDs are available in Europe for example, for
Denmark, Finland, Norway and Sweden.1

• If NIDs are available, linking data bases is technically
trivial.

• However, in many research applications, NIDs are either
not available at all or their usage is limited by law.

• In many applications, personal identifiers like names or
date of birth have to be used.

1For a comprehensive review of NIDs, see
https://en.wikipedia.org/wiki/National_identification_number
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Using Personal Identifiers

• Identifiers are not stable and are recorded with errors:
Winkler (2009:362) reports that 25% of true matches in a
census operation would have been missed by exact
matching.

• The use of exact matching identifiers will yield a
non-random subset of records.

• Therefore, record-linkage has to use methods allowing for
errors in identifiers.

• Many techniques for error-tolerant matching are based on
string similarity measures.
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String similarity measures

• In many applications, phonetic encodings such as
Soundex are used.

• Bigrams or trigrams of letters within names are also widely
used.

• Distance measures based on Levenshtein distances are
used, but computationally expensive.

• Many studies have shown that the Jaro-Winkler distance
seems to be robust and highly successful as distance
measure for names.

• Linkage methods are using string similarities for the
classification of potential pairs of records from different
databases.
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Linkage Methods

• All classification methods known to mankind have been
suggested for record linkage, for example Cluster Analysis,
Neural Nets, Bayes Networks, Tree Augmented Naive
Bayes, Random Forests etc.

• The most widely used method for record-linkage is
probabilistic record linkage using the Fellegi-Sunter (1969)
model.

• The core of the method is a decision based on conditional
likelihood ratios. It can be seen as a special version of a
naive Bayes classifier.

• For census scale data, probabilistic record linkage is still
considered to be state of the art.
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Need for Privacy Preserving Record Linkage

• In practice the data sets belong to different institutions and
are controlled by different data custodians.

• Exchange of unencrypted identifiers between such
institutions is usually restricted by law.

• Even within the same public administration this exchange
may be prohibited by law (’data silos’).

• If such linkages are allowed, usually special techniques
protecting the identifiers have to be used.

• The set of techniques for record linkage without revealing
identifiers is called Privacy Preserving Record Linkage or
PPRL.
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Implementation problems

• Examples for actual applications:
• Linking neonatal data to perinatal data without patient ID

(Schnell/Borgs 2015).
• Longitudinal tracking of offenders across different

databases.
• Creation of a national mortality register.
• Summing all credit debts for natural persons across all

financial institutions.
• Preparing for the Censuses 2021 & 2031.

• The solution has to be available now.
• Certification is needed and takes years.
• Most application need adoption of new laws, adding a few

years to the implementation.
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Most frequent settings for PPRL

• Required is micro-data, not the computation of summary
statistics or a more elaborated statistical model.

• There are hundreds or even thousands of separate
administrative units involved.

• The administrative units use different hardware and
different software.

• Different data quality between units is most likely.
• Data generation and linkage will probable be a yearly

enterprise (at most).
• Protocols requiring iterated computations (such as secure

multi-party protocols for linking) will not be approved by the
data protection agencies.
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HBC-Assumption

• In most security analysis in PPRL, the linkage unit acting
as trustee is the attacker.

• Since the linkage unit receives only encrypted identifiers,
the trustee might try to re-identify the encrypted keys.

• Most of the relevant literature in PPRL discusses ways to
prevent re-identification by the trustee.

• Nearly all protocols intended for applications in PPRL
assume semi-honest or honest-but-curious parties.

• Semi-honest parties act according to the protocol, but try to
learn secret information of the other parties.

• They may use additional information or use information they
gain during the execution of the protocol.

• This is widely regarded as a realistic assumption.
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Privacy considerations

• From a mathematical point of view, it seems impossible to
achieve the goal of a dataset, which can not be
re-identified at all.

• This is attributed by Dwork/Pottenger (2013) to ’. . . the fact
that the privacy-preserving database is useful’.

• German jurisdiction defines de facto anonymity as
modification of identifiers such as only a disproportionate
investment of time, cost and labour would lead to
re-identification.

• Therefore, the analysis of a cryptosystem for PPRL might
depend on the assumed motives of an attacker (Wan et al.
2015).

• Note: No real-world re-identification attacks on PPRL
databases have been reported (El-Emam et al. 2011).
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Approaches to PPRL
Trustee: High organizational demands, requires a

trustworthy institution with access to plain text
identifiers.

Secure Multi-party: Computationally intensive, network
access is necessary, typically not suitable for the
development of a statistical model.

Encrypted Phonetic Codes: Only limited error-tolerance.
Modern Privacy Preserving Record Linkage: Several

protocols suggested (overview: Vatsalan et al.
2013), but most of them are not applicable to the
given problem.

Only two approaches have been used in practical applications
with large databases within the setting described before:

1 Encrypted phonetic codes
2 Bloom Filter based PPRL

I will concentrate on the second set of methods.
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PPRL with Cryptographic Bloom Filters

• Schnell et al. (2009) suggested a new method for the
calculation of similarity between two encrypted strings for
the use in record linkage procedures.

• Identifiers are split into q-grams and then hashed with
several different keyed HMACs (MD5, SHA-1) in a bit
vector.

• The mapping of different hash functions into a bit vector is
called a Bloom filter (Bloom 1970).

• Given the Bloom filters, the initial string cannot be
reconstructed without serious cryptanalysis.

• Only the Bloom filters are used for the linkage.
• The similarity between two strings is approximated by a

similarity coefficient of their Bloom filters.

13/32



A simplified example

Two Bloom filters A, B with a length of 30
for "‘Smith"’ and "‘Smyth"’ and two HMACs.
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Building Basic Bloom Filters

• Usually, between 10 and 20 different hash-functions are
used for the encoding of each bigram.

• To speed up computations, we initially decided to use the
double-hashing scheme by Kirsch/Mitzenmacher (2006).

• Here, each n-gram is encoded by the sum of the numeric
representation of MD5 and SHA1 hashes:

If L is the length of the Bloom filter and k hash functions
have to be used, double hashing uses for the k -th function:

gk (x) = (SHA1(x) + k ∗ MD5(x)) mod L (1)

• For our application, this has been a classic example of a
seemingly innocent choice with unforeseen cryptographic
consequences (details will follow).
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Cryptographic Long-term Keys (CLK)

• Due to legal constraints, in some applications in some
countries only the use of one single key is allowed.

• Furthermore, frequency attacks of Basic Bloom filters
seemed to be possible.

• Schnell et al. (2011) therefore suggested encrypting all
identifiers in one single Bloom filter.

• The results produced by the CLK are slightly inferior to
those of separate Bloom filters, but harder to attack.

• A variation using separate Bloom filters of different lengths,
concatenating and permuting them are denoted as
’composite bloom filters’ by Durham et. al (2012) .

• In most simulations, the differences between CLKs and
composite Bloom filters are small.
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Challenges of PPRL

In order of decreasing importance for actual real-world use (in
my settings):

1 Security against attacks

2 Precision and Recall

3 Linkage errors

4 Missing identifiers

5 Scalability

6 Multiple databases
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Current state of PPRL
• Precision and recall is already acceptable, many groups

are working on small improvements.
• The way to solutions for handling linkage errors seems

clear (multiple imputation, weighting).
• We simply have currently no useful proposal for missing

identifiers. Most likely, the problem has to be handled in
the same way as linkage errors.

• Scalability is in many settings not an issue.
• Current solutions can handle 1 million records by 1 million

records in reasonable time (< 3h).
• Special hardware is an additional option.

• Some proposals for multiple databases have been
presented and there seems to be many ways to attack this
problem.

• Therefore, security of PPRL is the central problem for
real-world use.
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Attacks on Bloom filters

• Bloom filter based PPRL has been attacked by two
different techniques:

1 Constrained Satisfaction Solver (CSS) on frequencies of
entire Bloom Filters: Kuzu et al. (2011, 2013).

2 Cryptanalysis by interpreting the Bloom filter bit patterns as
a substitution cipher (Niedermeyer et al. 2014,
Kroll/Steinmetzer 2015).
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Details on Attack I

• Kuzu et al. (2011, 2013) used a CSS program to align
frequencies of simple Bloom Filters and unencrypted
identifiers.

• This seems to be a variant of a simple rank swapping
attack (Domingo-Ferrer/Muralidhar 2016), but they used
the estimated length of the encrypted strings as additional
information.

• Kuzu et al. (2013) used composite Bloom filters with the
same CSS attack.

• The authors consider their attack on separate Bloom filters
as successful, but not their attack on composite bloom
filters.
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Remarks on Attack I

• It should be noted that the CSS attack is based on the
entire Bloom filter, therefore it is no decoding, but an
alignment.

• This way of attack is impossible if each case generates a
new bit pattern, for example by using salted encodings
(Niedermeyer et al. 2014).
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Details on Attack II

• Niedermeyer et al. (2014) attempt the decoding (actual
revealing of all identifiers as clear text) by a cryptanalysis
of individual bit patterns within the Bloom filters.

• Niedermeyer et al. (2014) were successful with basic
Bloom filters.

• Kroll/Steinmetzer (2015) demonstrated success with
CLKs/composite Bloom filters.

• Both attacks are based on the limited number of bit
patterns generated by the linear combination of two hash
functions in the double-hashing scheme.
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Hardening Bloom Filters with Random Hashing
• Niedermeyer et al. (2014) showed that the double hashing scheme is

vulnerable to attacks on bit patterns resulting from bigrams.

• Replacing the double-hashing scheme by random hashing should
prevent the success of this attack on Bloom filters.

• Random hashing consists in using the bigrams as seed for random
number streams.

• Random hashing is implemented using a linear-congruential
pseudo-random number generator (LCG, Stallings 2014) to generate a
sequence X with the length k for each n-gram:

Xn+1 = (a ∗ Xn + c) mod L.

• This increases the number of possible bit patterns (L=1000, k=15) for a
n − gram (atoms) from less than 106 to more than 6.8 ∗ 1032.

• Therefore, the Niedermeyer-attack should fail for randomly hashed
Bloom filters. This theoretical expectation has been empirically verified
by Schnell/Borgs (2016).

• For an actual implementation, a cryptographic random stream generator
(for example, Salsa20, Bernstein 2008) might be more secure.
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Christen/Schnell/Vatsalan/Ranbaduge (2017)

• This year, we published an attack on Bloom-Filter
encodings which is independent of the kind of
hash-functions used .

• The attack is based on aligning clear text bigram
frequencies and frequent bit positions and then filtering
possible assignments.

• The attack is very fast (few seconds).
• Even in the worst-case scenario it yielded more than 40%

correct re-identification.
• For this attack, only clear text frequencies of a similar

sample of records are required.
• The attack can be used for CLKs and balanced and

XOR-BF’s as well.
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Further improvements

• Christen/Ranbaduge/Vatsalan/Schnell (2017) developed
new methods to refine and validate the sets of possible,
not-possible, and assigned q-grams.

• This approach is very fast and precise.
• However, frequency information on clear text and a couple

of high frequent Bloom filters are needed.
• Currently, Christen et al. are working on a frequent pattern

mining approach (based on the Apriori alg
• Therefore, we need methods to protect BFs against this

kind of attacks.
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General Remarks on protecting Bloom Filters

• The main difference to encryptions of clear text in
cryptography is the fact, that PPRL of Bloom filters has to
preserve only the similarity of top-k bit patterns in pairwise
comparisons.

• A decryption is not necessary.

• This allows simple modifications of identifiers or bit
patterns resulting in information loss.
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Vector folding

• To speed up data base searches in chemometrics, Baldi et
al. (2008) suggested folding bit vectors and applying XOR

3. PREVIOUS APPROACH

In the basic version of the previous approach,10 the value
A is stored together with each fingerprint Ab. Given two
fingerprints Ab and Bb, the Tanimoto measure can be bounded
by writing

S(Af, Bf)) A∩B
A∪B

e
min(A, B)
max(A, B)

) T(A, B) (3)

since A∩B e min(A, B) and A∪B g max(A, B). To see how
this bound can be used to speed up molecular searches,
consider a query molecule A and a similarity threshold 0 e
t e 1. If we are interested in retrieving only molecules that
have a similarity greater than t to the query molecule, then
any molecule B that satisfies T(A, B) e t can be discarded
from the search. Note that the bound T(A, B) can be
computed very rapidly from the additionally stored informa-
tion (A and B) and does not depend on the details of the
fingerprint vectors Ab and Bb. In previous work,10 we showed
analytically and through simulations how this approach yields
considerable savings in time and how it can be extended to
other situations, including searches based on multiple-
molecule queries, or searches aimed at retrieving the top K
hits rather than the hits above some similarity threshold.

4. A NEW PROXIMITY FILTER: THE XOR APPROACH
AND ITS SIMILARITY BOUNDS

We define a short fingerprint vector ab ) (ai) of length n,
where n is relatively small and typically a power of 2. In
the simulations and in our implementation, we use n ) 128.
Vector ab is derived from “folding” the long fingerprint vector
Ab using the XOR operator applied modulo n (ab) xnAb). As
a result, ai ) 1 if and only if the number of 1-bits contained
in Ab at positions congruent with i modulo n is odd, and 0
otherwise. The diagram in Figure 1 illustrates the simple
process of folding a binary fingerprint vector of size N )
16 into a fingerprint vector of size n ) 4, using the XOR
modulo operator.

Here, we propose to store for each molecule A in the
database not only the fingerprint Ab but also additional
information consisting of the shorter fingerprint ab, as well
as the values a and A. The additional information can be

viewed as a “header” preceding the vector Ab, which will be
used to derive useful bounds on similarity measures.

It is important to note that, in several chemoinformatics
systems (e.g., Daylight, Avalon, and Unity), a similar folding
approach is used in combination with the OR Boolean
operator in order to compress long fingerprints into shorter
fingerprints. In that lossy approach to compression, the length
of the shorter fingerprints is typically 1024 or 2048, slightly
above the value of n used here. This is related to a key
difference in the last column of the truth table of the OR
and XOR operators, namely, the XOR is a sparser operator:
whenever the XOR gives a 1-bit, the OR operator gives also
a 1-bit, but not vice versa. The OR-compressed representa-
tions are routinely used to estimate the similarity of the
molecules, simply by computing the Tanimoto similarity of
the compressed representations and using it as a proxy for
the Tanimoto similarity of the uncompressed representations.
We have shown18 that this approach introduces a systematic
bias in the estimation that can be corrected by deriving a
better estimate of the uncompressed similarity from the OR-
compressed representations. But, even this correction does
not lead to any bounds or any pruning. Here, we are not
proposing to use the XOR operator for lossy compression
and to estimate the similarity values. Rather, and this is the
key point, the short XOR fingerprints can be used to rapidly
derive exact bounds on the similarity values that are, in
general, tighter than those of eq 3.

To see this, first note that unions and intersections that
enter into the similarity measure can be expressed using the
XOR operator in the forms

A∩B) 1
2

[A+B- (AxB)] (4)

and

A∪B) 1
2

[A+B+ (AxB)] (5)

The crucial property of the XOR folding is that

AxBg axbg |a- b| (6)

As a result, we can bound the intersection and the union as
follows:

A∩Be
1
2

[A+B- (axb)]e 1
2

[A+B - |a- b|] (7)

and

A∪Bg
1
2

[A+B+ (axb)]g 1
2

[A+B + |a- b|] (8)

Finally, we can combine these inequalities, to bound the
Tanimoto similarity by

S(Af, Bf)) A∩B
A∪B

e Tx(A, B)) A+B- (axb)
A+B+ (axb)

e

Tab(A, B)) A+B - |a- b|
A+B + |a- b|

(9)

For example, consider two molecules satisfying A ) 60, B
) 50, A∩B ) 46, AxB ) 18, and axb ) 16. Then, the
Tanimoto similarity is S(Ab, Bb) ) 46/74 ) 0.71. The simple
bound from our previous work is T(A, B) ) 50/60 ) 0.83.
The new tighter bound involving XOR is Tx(A, B) ) 0.74.
Note that the XOR bound is not tighter than the previous
bound in an absolute sense. Examples can be constructed

Figure 1. Illustration of the folding process with a binary vector
of length N ) 16 (1 1 0 0 1 0 0 1 0 1 0 0 1 0 0 0) folded into a
binary vector of length n ) 4 (1 0 0 1), modulo 4 using the XOR
operator.

SPEEDING UP CHEMICAL DATABASE SEARCHES J. Chem. Inf. Model., Vol. 48, No. 7, 2008 1369

• Schnell/Borgs (2016) suggested XOR-Folding for PPRL.
• Using the Niedermeyer-attack, we find 51 instead of 2539

atoms.
• Loss in precision and recall seems to be acceptable.
• We consider vector folding XOR as a simple technique to

make some attacks more difficult.

27/32



Balanced Bloom filters
• The number of bits set in a Bloom filter (the Hamming

weight) can be used for attacks.
• Therefore, Bloom filter with constant Hamming weights

seem to be more secure against (unknown) attacks.
• Codes with constant Hamming weights are known as

constant-weight codes or balanced codes (Knuth 1986).
• These can be obtained by joining a binary string with its

negated copy (Berger 1961, Sayle 1998).
• The resulting binary vector should be permuted.
• This results in Balanced Bloom filters of length 2 ∗ L, which

have the Hamming weight L.
• To prevent reversal of the balancing, using a stable

identifier as a salt for the encoding makes the reversal
difficult.

• Currently, we are exploring double balanced Bloom filters,
where the columns also have the same Hamming weight.
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Randomized Response Bloom Filters:
BLIP and RAPPOR

• Alaggan et al. (2012) proposed the application of
Randomized Response to Bloom filters.

• The later Google publications (Erlingsson 2014, Fanti et al.
2015) used the same idea to propose RAPPOR, which is
used within the Chrome browser.

• The idea is to use the randomized response technique on
each bit position Bi of a Bloom filter:

B
′

i =


1 with probability 1

2 f
0 with probability 1

2 f
Bi with probability 1 − f

(2)

• Schnell/Borgs (2016) suggested to use Randomized
Response Bloom filters for PPRL and they seem to work
quite well.
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Summary

• Many modern PPRL methods are based on Bloom filters.

• Basic Bloom filters can be attacked by frequency alignments.

• Using CLKs instead of separate Bloom filters make attacks harder.

• Using salting (stable identifiers as part of the encryption password)
defies most frequency attacks.

• Additional hardening techniques are available:

• BLIP
• Balancing and Double Balancing
• Vector folding
• Rehashing (Schnell 2016)

• We are working on a comparative privacy study of this and other
approaches.
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Finally . . .

• We have implemented these techniques in a R-library, the first release
is due in December.

• We have started to work with a cryptographer (Frederik Armknecht) and
already found some new encodings methods.

• We are still searching for an expert in coding theory.

• We are always looking for applications.

• Please contact:

• rainer.schnell@uni-due.de
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rainer.schnell@uni-due.de
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